Лекция 9. Деревья решений и ансамбли: bagging, random forest, boosting
1) Дерево решений: базовая идея
Дерево решений — модель, которая последовательно задаёт вопросы вида
“признак ?” и в конце (в листе) выдаёт класс/вероятность.
Плюсы:
· понятная интерпретация (путь в дереве = правило),
· работает с нелинейностями и взаимодействиями признаков,
· не требует строгой нормализации (обычно).
Минусы:
· одиночное дерево легко переобучается,
· нестабильно: небольшая смена данных может сильно менять дерево.

2) Как дерево выбирает разбиения
На каждом узле выбирают признак и порог, которые лучше всего “очищают” классы.
2.1 Энтропия и Information Gain
Энтропия узла:

Выигрыш информации:

2.2 Индекс Джини (часто по умолчанию)

Выбираем разбиение, которое минимизирует средний Gini после split.

3) Почему дерево переобучается и как его “регуляризировать”
Ограничения (pre-pruning):
· MaxDepth — максимальная глубина
· MinLeafSize — минимум объектов в листе
· MinParentSize — минимум в родительском узле
· MaxNumSplits — число разбиений
Пост-обрезка (post-pruning):
· построили большое дерево → “подрезали” по validation/CV.

4) Ансамбли: зачем они нужны
Ансамбль объединяет много слабых моделей и даёт более устойчивое и точное решение.
Две основные стратегии:
1. Bagging / Random Forest — уменьшают дисперсию (variance), борются с переобучением.
2. Boosting — уменьшает смещение (bias), последовательно исправляет ошибки.

5) Bagging (Bootstrap Aggregating)
5.1 Идея
1. много раз делаем bootstrap-выборку из train (случайно с возвращением),
2. обучаем дерево на каждой выборке,
3. для классификации — голосуем большинством.

5.2 Что даёт bagging
· снижает variance,
· модель становится устойчивее,
· работает особенно хорошо для “шумных” деревьев.

6) Random Forest (Случайный лес)
Это bagging + случайный выбор признаков в каждом узле.
6.1 Ключевой приём
В каждом split дерево рассматривает только случайное подмножество признаков (например ).
Это уменьшает корреляцию между деревьями → ансамбль становится сильнее.
6.2 Важные параметры
· число деревьев (NumTrees)
· число признаков на split (NumPredictorsToSample)
· глубина/MinLeafSize (сложность деревьев)
· критерий split (Gini/Entropy)
6.3 Feature importance
Лес позволяет оценить важность признаков:
· по уменьшению impurity,
· или по permutation importance (более надёжно).

7) Boosting (усиление): общая идея
Boosting строит модели последовательно, каждый новый шаг фокусируется на ошибках предыдущих.
Общий вид:

Где — слабый классификатор (обычно маленькое дерево), — его вес.

8) AdaBoost
AdaBoost увеличивает веса объектов, которые были классифицированы неверно, и уменьшает веса правильно классифицированных.
Интуиция:
· “трудные” примеры получают больше внимания на следующих шагах.
Параметры:
· число итераций (weak learners),
· глубина слабых деревьев (обычно stump — глубина 1).

9) Gradient Boosting (GBDT)
Это более общий boosting, который оптимизирует функцию потерь градиентным методом:
· каждая новая модель приближает антиградиент ошибки.
Популярные реализации:
· XGBoost, LightGBM, CatBoost (в индустрии),
· в MATLAB — fitcensemble с методом LogitBoost, AdaBoostM1, GentleBoost и др.
9.1 Основные гиперпараметры boosting
· NumLearningCycles (число слабых моделей)
· LearnRate (скорость обучения)
меньше → лучше обобщение, но нужно больше шагов
· сложность базовых деревьев (depth/MinLeafSize)

10) Bagging/RandomForest vs Boosting — когда что выбирать
Bagging / Random Forest:
· хорошо “по умолчанию”,
· устойчиво,
· меньше риска переобучения,
· отлично при шуме.
Boosting:
· часто даёт более высокую точность,
· но чувствителен к шуму и выбросам,
· требует аккуратной настройки (LearnRate, число итераций, depth).
Практическое правило:
· нужен стабильный baseline → Random Forest
· нужна максимальная точность → Boosting (с CV и регуляризацией)

11) Метрики и диагностика
Для деревьев и ансамблей используйте:
· confusion matrix, F1, PR/AP при дисбалансе,
· ROC-AUC (для бинарного),
· OOB-error (out-of-bag) для bagging/лесов как быстрая оценка без отдельного validation.

